About uniformly Menger spaces
Mathematica Moravica, Tome 28 (2024) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Precompact type properties – precompactness (=totally precompactness), $\sigma$-precompactness, pre-Lindelöfness, (=$\aleph_{0}$-boundedness), $\tau$-boundedness – belong to the basic important invariants studied in the uniform topology. The theory of these invariants is wide and continues to develop. However, in a sense, the class of uniformly Menger spaces escaped the attention of researchers. Lj.D.R. Kočinac was the first who introduced and studied the class of uniformly Menger spaces in [3, 4]. It immediately follows from the definition that the class of uniformly Menger spaces lies between the class of precompact uniform spaces and the class of pre-Lindelöf uniform spaces. Therefore, we expect it to have many good properties. In this paper some important properties of the uniformly Menger spaces are investigated. In particular, it is established that under uniformly perfect mappings, the uniformly Menger property is preserved both in the image and the preimage direction.
Mots-clés : Uniform space, uniform Menger space, uniformly continuous mapping, uniformly perfect mapping.
@article{MM3_2024_28_1_a4,
     author = {Bekbolot Kanetov and Dinara Kanetova and Anara Baidzhuranova},
     title = {About uniformly {Menger} spaces},
     journal = {Mathematica Moravica},
     pages = {53 - 61},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2024_28_1_a4/}
}
TY  - JOUR
AU  - Bekbolot Kanetov
AU  - Dinara Kanetova
AU  - Anara Baidzhuranova
TI  - About uniformly Menger spaces
JO  - Mathematica Moravica
PY  - 2024
SP  - 53 
EP  -  61
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2024_28_1_a4/
ID  - MM3_2024_28_1_a4
ER  - 
%0 Journal Article
%A Bekbolot Kanetov
%A Dinara Kanetova
%A Anara Baidzhuranova
%T About uniformly Menger spaces
%J Mathematica Moravica
%D 2024
%P 53 - 61
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2024_28_1_a4/
%F MM3_2024_28_1_a4
Bekbolot Kanetov; Dinara Kanetova; Anara Baidzhuranova. About uniformly Menger spaces. Mathematica Moravica, Tome 28 (2024) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2024_28_1_a4/