$k-$regular decomposable incidence structure of maximum degree
Mathematica Moravica, Tome 27 (2023) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper discusses incidence structures and their rank.
The aim of this paper is to prove that there exists a regular decomposable incidence structure $ \mathcal{J}=\left(\mathbb{P},\mathcal{B} \right) $ of maximum degree depending on the size of the set and a predetermined rank.
Furthermore, an algorithm for construction of this structures is given.
In the proof of the main result, the points of the set $\mathbb{P}$ are shown by Euler’s formula of complex number.
Two examples of construction the described incidence structures of maximum degree 6 and maximum degree 30 are given.
Mots-clés :
Regular incidence structure, partition, Euler’s formula of complex number.
@article{MM3_2023_27_2_a7, author = {Dejan Sto\v{s}ovi\'c and Anita Kati\'c and Dario Gali\'c}, title = {$k-$regular decomposable incidence structure of maximum degree}, journal = {Mathematica Moravica}, pages = {127 - 136}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2023}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a7/} }
TY - JOUR AU - Dejan Stošović AU - Anita Katić AU - Dario Galić TI - $k-$regular decomposable incidence structure of maximum degree JO - Mathematica Moravica PY - 2023 SP - 127 EP - 136 VL - 27 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a7/ ID - MM3_2023_27_2_a7 ER -
Dejan Stošović; Anita Katić; Dario Galić. $k-$regular decomposable incidence structure of maximum degree. Mathematica Moravica, Tome 27 (2023) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a7/