Fixed and coincidence point theorems on partial metric spaces with an application
Mathematica Moravica, Tome 27 (2023) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The aim of this paper is to investigate some fixed and coincidence point theorems in complete, orbitally complete and (T, f)-orbitally complete partial metric spaces under the generalized contractive type conditions of mappings. Moreover, our results generalize and extend the several obtained results in the literature. Additionally some non-trivial examples are demonstrated, and an application has discussed to integral equations.
Mots-clés : Fixed point, coincidence point, orbital continuity, orbital completeness, partial metric and Hausdorff metric.
@article{MM3_2023_27_2_a2,
     author = {Rohit Kumar and Neeraj Garakoti and Naveen Chandra and Mahesh Joshi},
     title = {Fixed and coincidence point theorems on partial metric spaces with an application},
     journal = {Mathematica Moravica},
     pages = {33 - 53},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a2/}
}
TY  - JOUR
AU  - Rohit Kumar
AU  - Neeraj Garakoti
AU  - Naveen Chandra
AU  - Mahesh Joshi
TI  - Fixed and coincidence point theorems on partial metric spaces with an application
JO  - Mathematica Moravica
PY  - 2023
SP  - 33 
EP  -  53
VL  - 27
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a2/
ID  - MM3_2023_27_2_a2
ER  - 
%0 Journal Article
%A Rohit Kumar
%A Neeraj Garakoti
%A Naveen Chandra
%A Mahesh Joshi
%T Fixed and coincidence point theorems on partial metric spaces with an application
%J Mathematica Moravica
%D 2023
%P 33 - 53
%V 27
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a2/
%F MM3_2023_27_2_a2
Rohit Kumar; Neeraj Garakoti; Naveen Chandra; Mahesh Joshi. Fixed and coincidence point theorems on partial metric spaces with an application. Mathematica Moravica, Tome 27 (2023) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a2/