Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent
Mathematica Moravica, Tome 27 (2023) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we deal with a p(x)-biharmonic heat equation with variable exponent under Dirichlet boundary and initial condition. We prove the blow up of solutions under suitable conditions.
Mots-clés :
Blow up, heat equation, variable exponent.
@article{MM3_2023_27_2_a1, author = {Erhan Pi\c{s}kin and G\"ulistan Butak{\i}n}, title = {Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent}, journal = {Mathematica Moravica}, pages = {25 - 32}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2023}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a1/} }
Erhan Pişkin; Gülistan Butakın. Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent. Mathematica Moravica, Tome 27 (2023) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a1/