Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent
Mathematica Moravica, Tome 27 (2023) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we deal with a p(x)-biharmonic heat equation with variable exponent under Dirichlet boundary and initial condition. We prove the blow up of solutions under suitable conditions.
Mots-clés : Blow up, heat equation, variable exponent.
@article{MM3_2023_27_2_a1,
     author = {Erhan Pi\c{s}kin and G\"ulistan Butak{\i}n},
     title = {Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent},
     journal = {Mathematica Moravica},
     pages = {25 - 32},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a1/}
}
TY  - JOUR
AU  - Erhan Pişkin
AU  - Gülistan Butakın
TI  - Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent
JO  - Mathematica Moravica
PY  - 2023
SP  - 25 
EP  -  32
VL  - 27
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a1/
ID  - MM3_2023_27_2_a1
ER  - 
%0 Journal Article
%A Erhan Pişkin
%A Gülistan Butakın
%T Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent
%J Mathematica Moravica
%D 2023
%P 25 - 32
%V 27
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a1/
%F MM3_2023_27_2_a1
Erhan Pişkin; Gülistan Butakın. Blow-up phenomena for a p(x)-biharmonic heat equation with variable exponent. Mathematica Moravica, Tome 27 (2023) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2023_27_2_a1/