Ideal convergence and ideal Cauchy sequences in intuitionistic fuzzy metric spaces
Mathematica Moravica, Tome 27 (2023) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The present study introduces the concepts of ideal convergence (${I}$--convergence), ideal Cauchy (${I}$--Cauchy) sequences, $I^*$--convergence, and ${I^*}$--Cauchy sequences in intuitionistic fuzzy metric spaces. It defines ${I}$--limit and ${I}$--cluster points as a sequence in these spaces. Afterward, it examines some of their basic properties. Lastly, the paper discusses whether phenomena should be further investigated.
Mots-clés :
Ideal convergence, ideal Cauchy sequences, cluster points, limit points, intuitionistic fuzzy metric spaces.
@article{MM3_2023_27_1_a8, author = {Aykut Or and G\"okay Karabacak}, title = {Ideal convergence and ideal {Cauchy} sequences in intuitionistic fuzzy metric spaces}, journal = {Mathematica Moravica}, pages = {113 - 128}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2023_27_1_a8/} }
TY - JOUR AU - Aykut Or AU - Gökay Karabacak TI - Ideal convergence and ideal Cauchy sequences in intuitionistic fuzzy metric spaces JO - Mathematica Moravica PY - 2023 SP - 113 EP - 128 VL - 27 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2023_27_1_a8/ ID - MM3_2023_27_1_a8 ER -
Aykut Or; Gökay Karabacak. Ideal convergence and ideal Cauchy sequences in intuitionistic fuzzy metric spaces. Mathematica Moravica, Tome 27 (2023) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2023_27_1_a8/