New fixed figure results with the notion of k-ellipse
Mathematica Moravica, Tome 27 (2023) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, as a geometric approach to the fixed-point theory, we prove new fixed-figure results using the notion of $k$-ellipse on a metric space. For this purpose, we are inspired by the Caristi type mapping, Kannan type contraction, Chatterjea type contraction and Ćirić type contraction. After that, we give some existence and uniqueness theorems of a fixed $k$-ellipse. We also support our obtained results with illustrative examples. Finally, we present a new application to the $S$-Shaped Rectified Linear Activation Unit ($SReLU$) to show the importance of our theoretical results.
Mots-clés : Fixed figure, fixed k-ellipse, metric space, activation function.
@article{MM3_2023_27_1_a3,
     author = {H\"ulya Aytimur and \c{S}aban G\"uven\c{c} and Nihal Ta\c{s}},
     title = {New fixed figure results with the notion of k-ellipse},
     journal = {Mathematica Moravica},
     pages = {37 - 52},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2023_27_1_a3/}
}
TY  - JOUR
AU  - Hülya Aytimur
AU  - Şaban Güvenç
AU  - Nihal Taş
TI  - New fixed figure results with the notion of k-ellipse
JO  - Mathematica Moravica
PY  - 2023
SP  - 37 
EP  -  52
VL  - 27
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2023_27_1_a3/
ID  - MM3_2023_27_1_a3
ER  - 
%0 Journal Article
%A Hülya Aytimur
%A Şaban Güvenç
%A Nihal Taş
%T New fixed figure results with the notion of k-ellipse
%J Mathematica Moravica
%D 2023
%P 37 - 52
%V 27
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2023_27_1_a3/
%F MM3_2023_27_1_a3
Hülya Aytimur; Şaban Güvenç; Nihal Taş. New fixed figure results with the notion of k-ellipse. Mathematica Moravica, Tome 27 (2023) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2023_27_1_a3/