Existence of beam-equation solutions with strong damping and $p(x)$-biharmonic operator
Mathematica Moravica, Tome 26 (2022) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we consider a nonlinear beam equation with a strong damping and the $p(x)$-biharmonic operator. The exponent $p(\cdot)$ of nonlinearity is a given function satisfying some condition to be specified. Using Faedo-Galerkin method, the local and global existence of weak solutions is established with mild assumptions on the variable exponent $p(\cdot)$. This work improves and extends many other results in the literature.
Mots-clés : $p(x)$-biharmonic operator, weak solutions, beam equation, variable exponent.
@article{MM3_2022_26_2_a7,
     author = {Jorge Ferreira and Willian S. Panni and Erhan Pi\c{s}kin and Mohammad Shahrouzi},
     title = {Existence of beam-equation solutions with strong damping and $p(x)$-biharmonic operator},
     journal = {Mathematica Moravica},
     pages = {123 - 145},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a7/}
}
TY  - JOUR
AU  - Jorge Ferreira
AU  - Willian S. Panni
AU  - Erhan Pişkin
AU  - Mohammad Shahrouzi
TI  - Existence of beam-equation solutions with strong damping and $p(x)$-biharmonic operator
JO  - Mathematica Moravica
PY  - 2022
SP  - 123 
EP  -  145
VL  - 26
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a7/
ID  - MM3_2022_26_2_a7
ER  - 
%0 Journal Article
%A Jorge Ferreira
%A Willian S. Panni
%A Erhan Pişkin
%A Mohammad Shahrouzi
%T Existence of beam-equation solutions with strong damping and $p(x)$-biharmonic operator
%J Mathematica Moravica
%D 2022
%P 123 - 145
%V 26
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a7/
%F MM3_2022_26_2_a7
Jorge Ferreira; Willian S. Panni; Erhan Pişkin; Mohammad Shahrouzi. Existence of beam-equation solutions with strong damping and $p(x)$-biharmonic operator. Mathematica Moravica, Tome 26 (2022) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a7/