Anti-periodic boundary value problems for Caputo-Fabrizio fractional impulsive differential equations
Mathematica Moravica, Tome 26 (2022) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we shall discuss the existence and uniqueness of solutions for a nonlinear anti-periodic boundary value problem for fractional impulsive differential equations involving a Caputo-Fabrizio fractional derivative of order $r\in (0, 1)$. Our results are based on some fixed point theorem, nonlinear alternative of Leray-Schauder type and coupled lower and upper solutions.
Mots-clés : Fractional differential equation, Caputo-Fabrizio integral of fractional order, Caputo-Fabrizio fractional derivatives, Anti-periodic boundary value problem, Fixed point, Lower and upper solutions, coupled lower and upper solutions.
@article{MM3_2022_26_2_a1,
     author = {Mohammed Benyoub and Kacem Belghaba},
     title = {Anti-periodic boundary value problems for {Caputo-Fabrizio} fractional impulsive differential equations},
     journal = {Mathematica Moravica},
     pages = {49 - 62},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a1/}
}
TY  - JOUR
AU  - Mohammed Benyoub
AU  - Kacem Belghaba
TI  - Anti-periodic boundary value problems for Caputo-Fabrizio fractional impulsive differential equations
JO  - Mathematica Moravica
PY  - 2022
SP  - 49 
EP  -  62
VL  - 26
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a1/
ID  - MM3_2022_26_2_a1
ER  - 
%0 Journal Article
%A Mohammed Benyoub
%A Kacem Belghaba
%T Anti-periodic boundary value problems for Caputo-Fabrizio fractional impulsive differential equations
%J Mathematica Moravica
%D 2022
%P 49 - 62
%V 26
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a1/
%F MM3_2022_26_2_a1
Mohammed Benyoub; Kacem Belghaba. Anti-periodic boundary value problems for Caputo-Fabrizio fractional impulsive differential equations. Mathematica Moravica, Tome 26 (2022) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a1/