On the global uniform stability analysis of non-autonomous dynamical systems: A survey
Mathematica Moravica, Tome 26 (2022) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this survey, we introduce the notion of stability of time varying nonlinear systems. In particular we investigate the notion of
global practical exponential stability for non-autonomous systems. The proposed approach for stability analysis is based on the determination of the bounds of perturbations that characterize the asymptotic convergence of the solutions to a closed ball centered at the origin.
Mots-clés :
Lyapunov theory, Perturbed systems, Practical stability.
@article{MM3_2022_26_2_a0, author = {N. Hadj Taieb and M.A. Hammami and M. Hammi}, title = {On the global uniform stability analysis of non-autonomous dynamical systems: {A} survey}, journal = {Mathematica Moravica}, pages = {1 - 48}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2022}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a0/} }
TY - JOUR AU - N. Hadj Taieb AU - M.A. Hammami AU - M. Hammi TI - On the global uniform stability analysis of non-autonomous dynamical systems: A survey JO - Mathematica Moravica PY - 2022 SP - 1 EP - 48 VL - 26 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a0/ ID - MM3_2022_26_2_a0 ER -
N. Hadj Taieb; M.A. Hammami; M. Hammi. On the global uniform stability analysis of non-autonomous dynamical systems: A survey. Mathematica Moravica, Tome 26 (2022) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2022_26_2_a0/