A geometric approach to the Proinov type contractions
Mathematica Moravica, Tome 26 (2022) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we prove some fixed-circle, fixed-disc and fixed-ellipse results on metric spaces. To do this, we define the notions of Proinov type $a_{0}$-contraction and generalized Proinov type $a_{0}$-contraction. Also, we give some illustrative examples to show the validity of our obtained results. Finally, we present a nice application to exponential linear unit activation functions.
Mots-clés : Fixed circle, fixed disc, fixed ellipse, Proinov type $a_{0}$-contraction, generalized Proinov type $a_{0}$-contraction.
@article{MM3_2022_26_1_a9,
     author = {Nihal Ta\c{s}},
     title = {A geometric approach to the {Proinov} type contractions},
     journal = {Mathematica Moravica},
     pages = {123 - 132},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a9/}
}
TY  - JOUR
AU  - Nihal Taş
TI  - A geometric approach to the Proinov type contractions
JO  - Mathematica Moravica
PY  - 2022
SP  - 123 
EP  -  132
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a9/
ID  - MM3_2022_26_1_a9
ER  - 
%0 Journal Article
%A Nihal Taş
%T A geometric approach to the Proinov type contractions
%J Mathematica Moravica
%D 2022
%P 123 - 132
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a9/
%F MM3_2022_26_1_a9
Nihal Taş. A geometric approach to the Proinov type contractions. Mathematica Moravica, Tome 26 (2022) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a9/