On a family of bi-univalent functions related to the Fibonacci numbers
Mathematica Moravica, Tome 26 (2022) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this study, we construct a new family of holomorphic bi-univalent functions in the open unit disc by the help of $q-$analogue of Noor integral operator, principle of subordination and Fibonacci polynomials. Also we obtain coefficient bounds and Fekete Szegö inequality for functions belonging this family. We have illustrated relevant families and consequences.
Mots-clés : $q-$analogue of Noor integral operator, Fibonacci polynomials, Bi-univalent functions.
@article{MM3_2022_26_1_a7,
     author = {Arzu Akg\"ul},
     title = {On a family of bi-univalent functions related to the {Fibonacci} numbers},
     journal = {Mathematica Moravica},
     pages = {103 - 112},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a7/}
}
TY  - JOUR
AU  - Arzu Akgül
TI  - On a family of bi-univalent functions related to the Fibonacci numbers
JO  - Mathematica Moravica
PY  - 2022
SP  - 103 
EP  -  112
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a7/
ID  - MM3_2022_26_1_a7
ER  - 
%0 Journal Article
%A Arzu Akgül
%T On a family of bi-univalent functions related to the Fibonacci numbers
%J Mathematica Moravica
%D 2022
%P 103 - 112
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a7/
%F MM3_2022_26_1_a7
Arzu Akgül. On a family of bi-univalent functions related to the Fibonacci numbers. Mathematica Moravica, Tome 26 (2022) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a7/