Global and local existence of solution for fractional heat equation in $\mathbb{R}^N$ by Balakrishnan definition
Mathematica Moravica, Tome 26 (2022) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Our aim here is to collect and to compare two definitions of the fractional powers of non-negative operators that can be found in the literature; we will present the proof of an equivalence and compare properties of that notions in different approaches. Then we will apply next this equivalence in the study of global and local existence of solution for the semilinear Cauchy problem in $\R^N$ with fractional Laplacian \[ eft\{ \begin{array}{c} u_t = -(-\Delta)^lpha u + f(x,u), u(0,x) = u_0(x), \quad x ı \R^N. \end{array} \right. \]
Mots-clés : Fractional powers of operator, Balakrishinan, global solvability, Heat Equation.
@article{MM3_2022_26_1_a6,
     author = {Jorge Ferreira and Erhan Pi\c{s}kin and Mohammad Shahrouzi and Sebasti\~ao Cordeiro and Daniel Rocha},
     title = {Global and local existence of solution for fractional heat equation in $\mathbb{R}^N$ by {Balakrishnan} definition},
     journal = {Mathematica Moravica},
     pages = {89 - 101},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a6/}
}
TY  - JOUR
AU  - Jorge Ferreira
AU  - Erhan Pişkin
AU  - Mohammad Shahrouzi
AU  - Sebastião Cordeiro
AU  - Daniel Rocha
TI  - Global and local existence of solution for fractional heat equation in $\mathbb{R}^N$ by Balakrishnan definition
JO  - Mathematica Moravica
PY  - 2022
SP  - 89 
EP  -  101
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a6/
ID  - MM3_2022_26_1_a6
ER  - 
%0 Journal Article
%A Jorge Ferreira
%A Erhan Pişkin
%A Mohammad Shahrouzi
%A Sebastião Cordeiro
%A Daniel Rocha
%T Global and local existence of solution for fractional heat equation in $\mathbb{R}^N$ by Balakrishnan definition
%J Mathematica Moravica
%D 2022
%P 89 - 101
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a6/
%F MM3_2022_26_1_a6
Jorge Ferreira; Erhan Pişkin; Mohammad Shahrouzi; Sebastião Cordeiro; Daniel Rocha. Global and local existence of solution for fractional heat equation in $\mathbb{R}^N$ by Balakrishnan definition. Mathematica Moravica, Tome 26 (2022) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2022_26_1_a6/