Fixed point results via altering distance functions in relational fuzzy metric spaces with application
Mathematica Moravica, Tome 25 (2021) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Some fixed point theorems are developed in fuzzy metric spaces using an altering distance function under binary relationship. We ensure the existence and uniqueness of the solution to ordinary differential equation using our results. We also give a non-trivial example to illustrate our primary result. Our results strengthen and extend the Theorem 3.1 of Shen et al. (Applied Mathematics Letters, 25 (2012), 138-141).
Mots-clés :
Fuzzy metric spaces, fixed point, binary relation.
@article{MM3_2021_25_2_a9, author = {Ayush Bartwal and R.C. Dimri and Shivam Rawat}, title = {Fixed point results via altering distance functions in relational fuzzy metric spaces with application}, journal = {Mathematica Moravica}, pages = {109 - 124}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a9/} }
TY - JOUR AU - Ayush Bartwal AU - R.C. Dimri AU - Shivam Rawat TI - Fixed point results via altering distance functions in relational fuzzy metric spaces with application JO - Mathematica Moravica PY - 2021 SP - 109 EP - 124 VL - 25 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a9/ ID - MM3_2021_25_2_a9 ER -
%0 Journal Article %A Ayush Bartwal %A R.C. Dimri %A Shivam Rawat %T Fixed point results via altering distance functions in relational fuzzy metric spaces with application %J Mathematica Moravica %D 2021 %P 109 - 124 %V 25 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a9/ %F MM3_2021_25_2_a9
Ayush Bartwal; R.C. Dimri; Shivam Rawat. Fixed point results via altering distance functions in relational fuzzy metric spaces with application. Mathematica Moravica, Tome 25 (2021) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a9/