Applications of Borel distribution series on holomorphic and bi-univalent functions
Mathematica Moravica, Tome 25 (2021) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In present manuscript, we introduce and study two families $\mathcal{B}_{\Sigma}(\lambda,\delta;\alpha)$ and $\mathcal{B}_{\Sigma}^{*}(\lambda,\delta;\beta)$ of holomorphic and bi-univalent functions which involve the Borel distribution series. We establish upper bounds for the initial Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions in each of these families. We also point out special cases and consequences of our results.
Mots-clés :
Holomorphic functions, Bi-univalent functions, Borel distribution series, Coefficient bounds.
@article{MM3_2021_25_2_a8, author = {Abbas Kareem Wanas and Adnan Ghazy Al Amoush}, title = {Applications of {Borel} distribution series on holomorphic and bi-univalent functions}, journal = {Mathematica Moravica}, pages = {97 - 107}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a8/} }
TY - JOUR AU - Abbas Kareem Wanas AU - Adnan Ghazy Al Amoush TI - Applications of Borel distribution series on holomorphic and bi-univalent functions JO - Mathematica Moravica PY - 2021 SP - 97 EP - 107 VL - 25 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a8/ ID - MM3_2021_25_2_a8 ER -
Abbas Kareem Wanas; Adnan Ghazy Al Amoush. Applications of Borel distribution series on holomorphic and bi-univalent functions. Mathematica Moravica, Tome 25 (2021) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a8/