Lower bounds for blow up time of the $p$-Laplacian equation with damping term
Mathematica Moravica, Tome 25 (2021) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this work deals with the $p$-Laplacian wave equation with damping terms in a bounded domain. Under suitable conditions, we obtain a lower bounds for the blow up time. Our result extends the recent results obtained by Baghaei (2017) and Zhou (2015), for $p>2$.
Mots-clés :
Lower bounds, $p$-Laplacian equation, Damping term.
@article{MM3_2021_25_2_a2, author = {Yavuz Din\c{c} and Erhan Pi\c{s}kin and Cemil Tun\c{c}}, title = {Lower bounds for blow up time of the $p${-Laplacian} equation with damping term}, journal = {Mathematica Moravica}, pages = {29 - 33}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2021}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a2/} }
TY - JOUR AU - Yavuz Dinç AU - Erhan Pişkin AU - Cemil Tunç TI - Lower bounds for blow up time of the $p$-Laplacian equation with damping term JO - Mathematica Moravica PY - 2021 SP - 29 EP - 33 VL - 25 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a2/ ID - MM3_2021_25_2_a2 ER -
Yavuz Dinç; Erhan Pişkin; Cemil Tunç. Lower bounds for blow up time of the $p$-Laplacian equation with damping term. Mathematica Moravica, Tome 25 (2021) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2021_25_2_a2/