Fixed point for $F_\perp$-weak contraction
Mathematica Moravica, Tome 25 (2021) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we establish some fixed point results for $F_\perp$-weak contraction in orthogonal metric space and we give an application for the solution of second order differential equation.
Mots-clés : Orthogonal metric space, $F_\perp-contraction, $F_erp-weak contraction.
@article{MM3_2021_25_1_a8,
     author = {Neeraj Garakoti and Mahesh Chandra Joshi and Rohit Kumar},
     title = {Fixed point for $F_\perp$-weak contraction},
     journal = {Mathematica Moravica},
     pages = {113 - 122},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2021_25_1_a8/}
}
TY  - JOUR
AU  - Neeraj Garakoti
AU  - Mahesh Chandra Joshi
AU  - Rohit Kumar
TI  - Fixed point for $F_\perp$-weak contraction
JO  - Mathematica Moravica
PY  - 2021
SP  - 113 
EP  -  122
VL  - 25
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2021_25_1_a8/
ID  - MM3_2021_25_1_a8
ER  - 
%0 Journal Article
%A Neeraj Garakoti
%A Mahesh Chandra Joshi
%A Rohit Kumar
%T Fixed point for $F_\perp$-weak contraction
%J Mathematica Moravica
%D 2021
%P 113 - 122
%V 25
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2021_25_1_a8/
%F MM3_2021_25_1_a8
Neeraj Garakoti; Mahesh Chandra Joshi; Rohit Kumar. Fixed point for $F_\perp$-weak contraction. Mathematica Moravica, Tome 25 (2021) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2021_25_1_a8/