Coefficient estimates for families of bi-univalent functions defined by Ruscheweyh derivative operator
Mathematica Moravica, Tome 25 (2021) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The main purpose of this manuscript is to find upper bounds for the second and third Taylor-Maclaurin coefficients for two families of holomorphic and bi-univalent functions associated with Ruscheweyh derivative operator. Further, we point out certain special cases for our results.
Mots-clés : Holomorphic function, bi-univalent function, coefficient estimates, Ruscheweyh derivative operator.
@article{MM3_2021_25_1_a5,
     author = {Serap Bulut and Abbas Kareem Wanas},
     title = {Coefficient estimates for families of bi-univalent functions defined by {Ruscheweyh} derivative operator},
     journal = {Mathematica Moravica},
     pages = {71 - 80},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2021_25_1_a5/}
}
TY  - JOUR
AU  - Serap Bulut
AU  - Abbas Kareem Wanas
TI  - Coefficient estimates for families of bi-univalent functions defined by Ruscheweyh derivative operator
JO  - Mathematica Moravica
PY  - 2021
SP  - 71 
EP  -  80
VL  - 25
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2021_25_1_a5/
ID  - MM3_2021_25_1_a5
ER  - 
%0 Journal Article
%A Serap Bulut
%A Abbas Kareem Wanas
%T Coefficient estimates for families of bi-univalent functions defined by Ruscheweyh derivative operator
%J Mathematica Moravica
%D 2021
%P 71 - 80
%V 25
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2021_25_1_a5/
%F MM3_2021_25_1_a5
Serap Bulut; Abbas Kareem Wanas. Coefficient estimates for families of bi-univalent functions defined by Ruscheweyh derivative operator. Mathematica Moravica, Tome 25 (2021) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2021_25_1_a5/