Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces
Mathematica Moravica, Tome 24 (2020) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The aim of this paper is to introduce the concepts of generalized $(\psi-\phi)$-weak contraction mappings of type (A) and (B) and
establish some fixed point theorems for said contraction mappings in
complete partial metric spaces. Our results extend and generalize several results from the current existing literature.
Mots-clés :
Fixed point, generalized $(\psi\phi)$-weak contraction mapping, partial metric space.
@article{MM3_2020_24_2_a7, author = {G.S. Saluja}, title = {Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces}, journal = {Mathematica Moravica}, pages = {99 - 115}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2020}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a7/} }
TY - JOUR AU - G.S. Saluja TI - Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces JO - Mathematica Moravica PY - 2020 SP - 99 EP - 115 VL - 24 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a7/ ID - MM3_2020_24_2_a7 ER -
G.S. Saluja. Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces. Mathematica Moravica, Tome 24 (2020) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a7/