Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces
Mathematica Moravica, Tome 24 (2020) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The aim of this paper is to introduce the concepts of generalized $(\psi-\phi)$-weak contraction mappings of type (A) and (B) and establish some fixed point theorems for said contraction mappings in complete partial metric spaces. Our results extend and generalize several results from the current existing literature.
Mots-clés : Fixed point, generalized $(\psi\phi)$-weak contraction mapping, partial metric space.
@article{MM3_2020_24_2_a7,
     author = {G.S. Saluja},
     title = {Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces},
     journal = {Mathematica Moravica},
     pages = {99 - 115},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a7/}
}
TY  - JOUR
AU  - G.S. Saluja
TI  - Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces
JO  - Mathematica Moravica
PY  - 2020
SP  - 99 
EP  -  115
VL  - 24
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a7/
ID  - MM3_2020_24_2_a7
ER  - 
%0 Journal Article
%A G.S. Saluja
%T Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces
%J Mathematica Moravica
%D 2020
%P 99 - 115
%V 24
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a7/
%F MM3_2020_24_2_a7
G.S. Saluja. Some fixed point theorems for generalized $(\psi\phi)$-weak contraction mappings in partial metric spaces. Mathematica Moravica, Tome 24 (2020) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a7/