Some fuzzy common fixed point theorems using common limit in the range property with an application
Mathematica Moravica, Tome 24 (2020) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present paper, we prove some common fixed point theorems for mappings satisfying common limit in the range property in M-fuzzy metric space. Further, we prove fixed point theorem for $\phi$-contractive conditions in aforesaid spaces with the illustration of an example. As an application of our result, we study the existence and uniqueness of the solution of integral equation (Volterra integral equations of the second kind) with instances.
Mots-clés : M-fuzzy metric spaces, Common limit in the range property ((CLR) property), Weakly compatible mappings.
@article{MM3_2020_24_2_a2,
     author = {Ved Prakash Bhardwaj and Kamal Wadhwa},
     title = {Some fuzzy common fixed point theorems using common limit in the range property with an application},
     journal = {Mathematica Moravica},
     pages = {33 - 49},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a2/}
}
TY  - JOUR
AU  - Ved Prakash Bhardwaj
AU  - Kamal Wadhwa
TI  - Some fuzzy common fixed point theorems using common limit in the range property with an application
JO  - Mathematica Moravica
PY  - 2020
SP  - 33 
EP  -  49
VL  - 24
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a2/
ID  - MM3_2020_24_2_a2
ER  - 
%0 Journal Article
%A Ved Prakash Bhardwaj
%A Kamal Wadhwa
%T Some fuzzy common fixed point theorems using common limit in the range property with an application
%J Mathematica Moravica
%D 2020
%P 33 - 49
%V 24
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a2/
%F MM3_2020_24_2_a2
Ved Prakash Bhardwaj; Kamal Wadhwa. Some fuzzy common fixed point theorems using common limit in the range property with an application. Mathematica Moravica, Tome 24 (2020) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2020_24_2_a2/