On exponentially $(h_1,h_2)$-convex functions and fractional integral inequalities related
Mathematica Moravica, Tome 24 (2020) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this work the concept of exponentially $(h_1,h_2)$-convex function is introduced and using it, the Hermite-Hadamard inequality and some bounds for the right side of this inequality, via Raina’s fractional integral operator and generalized convex functions, are established.
Mots-clés : Exponentially $(h_1;h_2)$-convex function, Raina’s fractional integral operator, fractional integral inequalities.
@article{MM3_2020_24_1_a3,
     author = {Miguel Vivas-Cortez and Jorge Eliecer Hern\'andez Hern\'andez and Sercan Turhan},
     title = {On exponentially $(h_1,h_2)$-convex functions and fractional integral inequalities related},
     journal = {Mathematica Moravica},
     pages = {45 - 62},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2020_24_1_a3/}
}
TY  - JOUR
AU  - Miguel Vivas-Cortez
AU  - Jorge Eliecer Hernández Hernández
AU  - Sercan Turhan
TI  - On exponentially $(h_1,h_2)$-convex functions and fractional integral inequalities related
JO  - Mathematica Moravica
PY  - 2020
SP  - 45 
EP  -  62
VL  - 24
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2020_24_1_a3/
ID  - MM3_2020_24_1_a3
ER  - 
%0 Journal Article
%A Miguel Vivas-Cortez
%A Jorge Eliecer Hernández Hernández
%A Sercan Turhan
%T On exponentially $(h_1,h_2)$-convex functions and fractional integral inequalities related
%J Mathematica Moravica
%D 2020
%P 45 - 62
%V 24
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2020_24_1_a3/
%F MM3_2020_24_1_a3
Miguel Vivas-Cortez; Jorge Eliecer Hernández Hernández; Sercan Turhan. On exponentially $(h_1,h_2)$-convex functions and fractional integral inequalities related. Mathematica Moravica, Tome 24 (2020) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2020_24_1_a3/