Derivations satisfying certain algebraic identities on Lie ideals
Mathematica Moravica, Tome 23 (2019) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let d be a derivation of a semiprime ring R and L a nonzero Lie ideal of R. In this note, it is proved that every noncentral square-closed Lie ideal of R contains a nonzero ideal of R. Further, we use this result to characterize the conditions: $d(xy) = d(x)d(y), d(xy) = d(y)d(x)$ on L. With this, a theorem of Ali et al. [14] can be deduced.
Mots-clés : Semiprime ring, Lie ideals, derivation
@article{MM3_2019_23_2_a6,
     author = {Gurninder S. Sandhu and Deepak Kumar},
     title = {Derivations satisfying certain algebraic identities on {Lie} ideals},
     journal = {Mathematica Moravica},
     pages = {79 - 86},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a6/}
}
TY  - JOUR
AU  - Gurninder S. Sandhu
AU  - Deepak Kumar
TI  - Derivations satisfying certain algebraic identities on Lie ideals
JO  - Mathematica Moravica
PY  - 2019
SP  - 79 
EP  -  86
VL  - 23
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a6/
ID  - MM3_2019_23_2_a6
ER  - 
%0 Journal Article
%A Gurninder S. Sandhu
%A Deepak Kumar
%T Derivations satisfying certain algebraic identities on Lie ideals
%J Mathematica Moravica
%D 2019
%P 79 - 86
%V 23
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a6/
%F MM3_2019_23_2_a6
Gurninder S. Sandhu; Deepak Kumar. Derivations satisfying certain algebraic identities on Lie ideals. Mathematica Moravica, Tome 23 (2019) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a6/