Strong Differential Sandwich Results of $\lambda$-Pseudo-Starlike Functions with Respect to Symmetrical Points
Mathematica Moravica, Tome 23 (2019) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present investigation, by considering suitable classes of admissible functions, we establish strong differential subordination and superordination properties for $\lambda$-pseudo-starlike functions with respect to symmetrical points in the open unit disk U. These results are applied to obtain strong differential sandwich results.
Mots-clés : Strong differential subordination, Strong differential superordination, $\lambda$-pseudo-starlike functions, symmetrical points, Admissible functions
@article{MM3_2019_23_2_a3,
     author = {H. M. Srivastava and Abbas Kareem Wanas},
     title = {Strong {Differential} {Sandwich} {Results} of $\lambda${-Pseudo-Starlike} {Functions} with {Respect} to {Symmetrical} {Points}},
     journal = {Mathematica Moravica},
     pages = {45 - 58},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a3/}
}
TY  - JOUR
AU  - H. M. Srivastava
AU  - Abbas Kareem Wanas
TI  - Strong Differential Sandwich Results of $\lambda$-Pseudo-Starlike Functions with Respect to Symmetrical Points
JO  - Mathematica Moravica
PY  - 2019
SP  - 45 
EP  -  58
VL  - 23
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a3/
ID  - MM3_2019_23_2_a3
ER  - 
%0 Journal Article
%A H. M. Srivastava
%A Abbas Kareem Wanas
%T Strong Differential Sandwich Results of $\lambda$-Pseudo-Starlike Functions with Respect to Symmetrical Points
%J Mathematica Moravica
%D 2019
%P 45 - 58
%V 23
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a3/
%F MM3_2019_23_2_a3
H. M. Srivastava; Abbas Kareem Wanas. Strong Differential Sandwich Results of $\lambda$-Pseudo-Starlike Functions with Respect to Symmetrical Points. Mathematica Moravica, Tome 23 (2019) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a3/