Existence of positive periodic solutions for third-order nonlinear delay differential equations with variable coefficients
Mathematica Moravica, Tome 23 (2019) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, the following third-order nonlinear delay differential equation with periodic coefficients $$x'''(t) + p(t)x''(t)+q(t)x'(t)+r(t)x(t)= f\bigl(t,x(t),x(t-au(t))\bigr) + \frac{d}{dt}g\bigl(t,x(t-au(t))\bigr),$$ is considered. By employing Green's function and Krasnoselskii's fixed point theorem, we state and prove the existence of positive periodic solutions to the third-order nonlinear delay differential equation.
Mots-clés : Fixed point, positive periodic solutions, third-order delay differential equations
@article{MM3_2019_23_2_a1,
     author = {Abdelouaheb Ardjouni and Ahcene Djoudi},
     title = {Existence of positive periodic solutions for third-order nonlinear delay differential equations with variable coefficients},
     journal = {Mathematica Moravica},
     pages = {17 - 28},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a1/}
}
TY  - JOUR
AU  - Abdelouaheb Ardjouni
AU  - Ahcene Djoudi
TI  - Existence of positive periodic solutions for third-order nonlinear delay differential equations with variable coefficients
JO  - Mathematica Moravica
PY  - 2019
SP  - 17 
EP  -  28
VL  - 23
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a1/
ID  - MM3_2019_23_2_a1
ER  - 
%0 Journal Article
%A Abdelouaheb Ardjouni
%A Ahcene Djoudi
%T Existence of positive periodic solutions for third-order nonlinear delay differential equations with variable coefficients
%J Mathematica Moravica
%D 2019
%P 17 - 28
%V 23
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a1/
%F MM3_2019_23_2_a1
Abdelouaheb Ardjouni; Ahcene Djoudi. Existence of positive periodic solutions for third-order nonlinear delay differential equations with variable coefficients. Mathematica Moravica, Tome 23 (2019) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_2_a1/