On $\mathcal{I}$-Fréchet-Urysohn spaces and sequential $\mathcal{I}$-convergence groups
Mathematica Moravica, Tome 23 (2019) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce the concept of sequential $\mathcal{I}$-convergence spaces and $\mathcal{I}$-Fréchet-Urysohn space and study their properties. We give a sufficient condition for the product of two sequential $\mathcal{I}$-convergence spaces to be a sequential $\mathcal{I}$-convergence space. Finally, we introduce sequential $\mathcal{I}$-convergence groups and obtain an $\mathcal{I}$-completion of these groups satisfying certain conditions.
Mots-clés :
Ideal, admissible ideal, $\mathcal{I}$-Fréchet-Urysohn space, sequential $\mathcal{I}$-convergence space, $\mathcal{I}$-completion
@article{MM3_2019_23_1_a9, author = {V. Renukadevi and P. Vijayashanthi}, title = {On $\mathcal{I}${-Fr\'echet-Urysohn} spaces and sequential $\mathcal{I}$-convergence groups}, journal = {Mathematica Moravica}, pages = {119 - 129}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a9/} }
TY - JOUR AU - V. Renukadevi AU - P. Vijayashanthi TI - On $\mathcal{I}$-Fréchet-Urysohn spaces and sequential $\mathcal{I}$-convergence groups JO - Mathematica Moravica PY - 2019 SP - 119 EP - 129 VL - 23 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a9/ ID - MM3_2019_23_1_a9 ER -
V. Renukadevi; P. Vijayashanthi. On $\mathcal{I}$-Fréchet-Urysohn spaces and sequential $\mathcal{I}$-convergence groups. Mathematica Moravica, Tome 23 (2019) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a9/