Upper and lower solutions method for Caputo–Hadamard fractional differential inclusions
Mathematica Moravica, Tome 23 (2019) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we use some background concerning multivalued functions and set-valued analysis, the fixed point theorem of Bohnenblust–Karlin and the method of upper and lower solutions to investigate the existence of solutions for a class of boundary value problem of functional differential inclusions involving the Caputo–Hadamard fractional derivative.
Mots-clés : Fractional differential inclusion, Caputo–Hadamard fractional derivative, fixed point, boundary condition, upper solution, lower solution
@article{MM3_2019_23_1_a8,
     author = {Sa{\"\i}d Abbas and Mouffak Benchohra and Samira Hamani and Johnny Henderson},
     title = {Upper and lower solutions method for {Caputo{\textendash}Hadamard} fractional differential inclusions},
     journal = {Mathematica Moravica},
     pages = {107 - 118},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a8/}
}
TY  - JOUR
AU  - Saïd Abbas
AU  - Mouffak Benchohra
AU  - Samira Hamani
AU  - Johnny Henderson
TI  - Upper and lower solutions method for Caputo–Hadamard fractional differential inclusions
JO  - Mathematica Moravica
PY  - 2019
SP  - 107 
EP  -  118
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a8/
ID  - MM3_2019_23_1_a8
ER  - 
%0 Journal Article
%A Saïd Abbas
%A Mouffak Benchohra
%A Samira Hamani
%A Johnny Henderson
%T Upper and lower solutions method for Caputo–Hadamard fractional differential inclusions
%J Mathematica Moravica
%D 2019
%P 107 - 118
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a8/
%F MM3_2019_23_1_a8
Saïd Abbas; Mouffak Benchohra; Samira Hamani; Johnny Henderson. Upper and lower solutions method for Caputo–Hadamard fractional differential inclusions. Mathematica Moravica, Tome 23 (2019) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a8/