Strong commutativity preserving derivations on Lie ideals of prime $\Gamma$-rings
Mathematica Moravica, Tome 23 (2019) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $M$ be a $\Gamma$-ring and $S\subseteq M$. A mapping $f:M\rightarrow M$ is called strong commutativity preserving on $S$ if $[f(x),f(y)]_{\alpha}=[x,y]_{\alpha}$, for all $x,y\in S$, $\alpha\in\Gamma$. In the present paper, we investigate the commutativity of the prime $\Gamma$-ring $M$ of characteristic not 2 with center $Z(M)\neq (0)$ admitting a derivation which is strong commutativity preserving on a nonzero square closed Lie ideal $U$ of $M$. Moreover, we also obtain a related result when a mapping $d$ is assumed to be a derivation on $U$ satisfying the condition $d(u)\circ_{\alpha}d(v)=u\circ_{\alpha}v$, for all $u,v\in U$, $\alpha\in \Gamma$.
Mots-clés : Prime gamma rings, Lie ideals, derivations, strong commutativity preserving maps
@article{MM3_2019_23_1_a5,
     author = {Okan Arslan and Berna Arslan},
     title = {Strong commutativity preserving derivations on {Lie} ideals of prime $\Gamma$-rings},
     journal = {Mathematica Moravica},
     pages = {63 - 73},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a5/}
}
TY  - JOUR
AU  - Okan Arslan
AU  - Berna Arslan
TI  - Strong commutativity preserving derivations on Lie ideals of prime $\Gamma$-rings
JO  - Mathematica Moravica
PY  - 2019
SP  - 63 
EP  -  73
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a5/
ID  - MM3_2019_23_1_a5
ER  - 
%0 Journal Article
%A Okan Arslan
%A Berna Arslan
%T Strong commutativity preserving derivations on Lie ideals of prime $\Gamma$-rings
%J Mathematica Moravica
%D 2019
%P 63 - 73
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a5/
%F MM3_2019_23_1_a5
Okan Arslan; Berna Arslan. Strong commutativity preserving derivations on Lie ideals of prime $\Gamma$-rings. Mathematica Moravica, Tome 23 (2019) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a5/