On location in a half-plane of zeros of perturbed first order entire functions
Mathematica Moravica, Tome 23 (2019) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the entire functions $$h(z)=um_{k=0}^ıfty \frac{a_{k}z^{k}}{k!} \quad\mbox{and}\quad ilde h(z)=um_{k=0}^ıfty \frac{ilde a_kz^{k}}{k!}$$ $( a_0=\tilde a_0=1; z, a_k, \tilde a_k\in {\bf C}, k=1, 2, \dots )$, provided $$um_{k=0}^ıfty |a_{k}|^2, um_{k=0}^ıfty |ilde a_{k}|^2\] and all the zeros of $h(z)$ are in a half-plane. We investigate the following problem: how small should be the quantity $q:=(\sum_{k=1}^\infty |a_k-\tilde a_k|^2)^{1/2}$ in order to all the zeros of $\tilde h(z)$ lie in the same half-plane?
Mots-clés :
Entire functions, zeros, perturbations
@article{MM3_2019_23_1_a4, author = {Michael Gil}, title = {On location in a half-plane of zeros of perturbed first order entire functions}, journal = {Mathematica Moravica}, pages = {51 - 61}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2019}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a4/} }
Michael Gil. On location in a half-plane of zeros of perturbed first order entire functions. Mathematica Moravica, Tome 23 (2019) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a4/