On location in a half-plane of zeros of perturbed first order entire functions
Mathematica Moravica, Tome 23 (2019) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider the entire functions $$h(z)=um_{k=0}^ıfty \frac{a_{k}z^{k}}{k!} \quad\mbox{and}\quad ilde h(z)=um_{k=0}^ıfty \frac{ilde a_kz^{k}}{k!}$$ $( a_0=\tilde a_0=1; z, a_k, \tilde a_k\in {\bf C}, k=1, 2, \dots )$, provided $$um_{k=0}^ıfty |a_{k}|^2, um_{k=0}^ıfty |ilde a_{k}|^2\] and all the zeros of $h(z)$ are in a half-plane. We investigate the following problem: how small should be the quantity $q:=(\sum_{k=1}^\infty |a_k-\tilde a_k|^2)^{1/2}$ in order to all the zeros of $\tilde h(z)$ lie in the same half-plane?
Mots-clés : Entire functions, zeros, perturbations
@article{MM3_2019_23_1_a4,
     author = {Michael Gil},
     title = {On location in a half-plane of zeros of perturbed first order entire functions},
     journal = {Mathematica Moravica},
     pages = {51 - 61},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a4/}
}
TY  - JOUR
AU  - Michael Gil
TI  - On location in a half-plane of zeros of perturbed first order entire functions
JO  - Mathematica Moravica
PY  - 2019
SP  - 51 
EP  -  61
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a4/
ID  - MM3_2019_23_1_a4
ER  - 
%0 Journal Article
%A Michael Gil
%T On location in a half-plane of zeros of perturbed first order entire functions
%J Mathematica Moravica
%D 2019
%P 51 - 61
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a4/
%F MM3_2019_23_1_a4
Michael Gil. On location in a half-plane of zeros of perturbed first order entire functions. Mathematica Moravica, Tome 23 (2019) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a4/