Approximation by Zygmund means in variable exponent Lebesque spaces
Mathematica Moravica, Tome 23 (2019) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present work we investigate the approximation of the functions by the Zygmund means in variable exponent Lebesgue spaces. Here the estimate which is obtained depends on sequence of the best approximation in Lebesgue spaces with variable exponent. Also, these results were applied to estimates of approximations of Zygmund sums in Smirnov classes with variable exponent defined on simply connected domains of the complex plane.
Mots-clés : Lebesgue spaces with variable exponent, best approximation by trigonometric polynomials, Zygmund means, modulus of smoothness
@article{MM3_2019_23_1_a2,
     author = {Sadulla Z. Jafarov},
     title = {Approximation by {Zygmund} means in variable exponent {Lebesque} spaces},
     journal = {Mathematica Moravica},
     pages = {27 - 39},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a2/}
}
TY  - JOUR
AU  - Sadulla Z. Jafarov
TI  - Approximation by Zygmund means in variable exponent Lebesque spaces
JO  - Mathematica Moravica
PY  - 2019
SP  - 27 
EP  -  39
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a2/
ID  - MM3_2019_23_1_a2
ER  - 
%0 Journal Article
%A Sadulla Z. Jafarov
%T Approximation by Zygmund means in variable exponent Lebesque spaces
%J Mathematica Moravica
%D 2019
%P 27 - 39
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a2/
%F MM3_2019_23_1_a2
Sadulla Z. Jafarov. Approximation by Zygmund means in variable exponent Lebesque spaces. Mathematica Moravica, Tome 23 (2019) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a2/