Behavior of solutions of a second order rational difference equation
Mathematica Moravica, Tome 23 (2019) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we solve the difference equation $$x_{n+1}=\frac{lpha}{x_nx_{n-1}-1}, \quad n=0,1,\dots,$$ where $\alpha>0$ and the initial values $x_{-1}$, $x_{0}$ are real numbers. We find some invariant sets and discuss the global behavior of the solutions of that equation. We show that when $\alpha>\frac{2}{3\sqrt3}$, under certain conditions there exist solutions, that are either periodic or converging to periodic solutions. We show also the existence of dense solutions in the real line. Finally, we show that when $\alpha\frac{2}{3\sqrt3}$, one of the negative equilibrium points attracts all orbits with initials outside a set of Lebesgue measure zero.
Mots-clés : Difference equation, forbidden set, periodic solution, unbounded solution
@article{MM3_2019_23_1_a1,
     author = {Raafat Abo-Zeid},
     title = {Behavior of solutions of a second order rational difference equation},
     journal = {Mathematica Moravica},
     pages = {11 - 25},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a1/}
}
TY  - JOUR
AU  - Raafat Abo-Zeid
TI  - Behavior of solutions of a second order rational difference equation
JO  - Mathematica Moravica
PY  - 2019
SP  - 11 
EP  -  25
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a1/
ID  - MM3_2019_23_1_a1
ER  - 
%0 Journal Article
%A Raafat Abo-Zeid
%T Behavior of solutions of a second order rational difference equation
%J Mathematica Moravica
%D 2019
%P 11 - 25
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a1/
%F MM3_2019_23_1_a1
Raafat Abo-Zeid. Behavior of solutions of a second order rational difference equation. Mathematica Moravica, Tome 23 (2019) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2019_23_1_a1/