Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings
Mathematica Moravica, Tome 22 (2018) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce the concept of derivation $d_{a, \beta}$ of ordered $\Gamma$-semiring. We study some of the properties of derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings. We prove that if a derivation $d_{a, \beta}$ is nonzero on an integral $\Gamma$-semiring $M$ then it is non-zero on any non-zero ideal of $M$ and we characterize $k$-ideal and $m-k$ ideal using derivation $d_{a, \beta}$ of ordered $\Gamma$-semiring.
Mots-clés :
Derivation, $\Gamma$-semiring, ordered $\Gamma$-semiring, integral ordered $\Gamma$-semiring
@article{MM3_2018_22_2_a9, author = {Marapureddy Murali Krishna Rao and Kona Rajendr Kumar and Bolineni Venkateswarlu and Bandaru Ravi Kumar}, title = {Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings}, journal = {Mathematica Moravica}, pages = {117 - 130}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a9/} }
TY - JOUR AU - Marapureddy Murali Krishna Rao AU - Kona Rajendr Kumar AU - Bolineni Venkateswarlu AU - Bandaru Ravi Kumar TI - Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings JO - Mathematica Moravica PY - 2018 SP - 117 EP - 130 VL - 22 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a9/ ID - MM3_2018_22_2_a9 ER -
%0 Journal Article %A Marapureddy Murali Krishna Rao %A Kona Rajendr Kumar %A Bolineni Venkateswarlu %A Bandaru Ravi Kumar %T Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings %J Mathematica Moravica %D 2018 %P 117 - 130 %V 22 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a9/ %F MM3_2018_22_2_a9
Marapureddy Murali Krishna Rao; Kona Rajendr Kumar; Bolineni Venkateswarlu; Bandaru Ravi Kumar. Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings. Mathematica Moravica, Tome 22 (2018) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a9/