Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings
Mathematica Moravica, Tome 22 (2018) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we introduce the concept of derivation $d_{a, \beta}$ of ordered $\Gamma$-semiring. We study some of the properties of derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings. We prove that if a derivation $d_{a, \beta}$ is nonzero on an integral $\Gamma$-semiring $M$ then it is non-zero on any non-zero ideal of $M$ and we characterize $k$-ideal and $m-k$ ideal using derivation $d_{a, \beta}$ of ordered $\Gamma$-semiring.
Mots-clés : Derivation, $\Gamma$-semiring, ordered $\Gamma$-semiring, integral ordered $\Gamma$-semiring
@article{MM3_2018_22_2_a9,
     author = {Marapureddy Murali Krishna Rao and Kona Rajendr Kumar and Bolineni Venkateswarlu and Bandaru Ravi Kumar},
     title = {Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings},
     journal = {Mathematica Moravica},
     pages = {117 - 130},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a9/}
}
TY  - JOUR
AU  - Marapureddy Murali Krishna Rao
AU  - Kona Rajendr Kumar
AU  - Bolineni Venkateswarlu
AU  - Bandaru Ravi Kumar
TI  - Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings
JO  - Mathematica Moravica
PY  - 2018
SP  - 117 
EP  -  130
VL  - 22
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a9/
ID  - MM3_2018_22_2_a9
ER  - 
%0 Journal Article
%A Marapureddy Murali Krishna Rao
%A Kona Rajendr Kumar
%A Bolineni Venkateswarlu
%A Bandaru Ravi Kumar
%T Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings
%J Mathematica Moravica
%D 2018
%P 117 - 130
%V 22
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a9/
%F MM3_2018_22_2_a9
Marapureddy Murali Krishna Rao; Kona Rajendr Kumar; Bolineni Venkateswarlu; Bandaru Ravi Kumar. Derivation $d_{a, \beta}$ of ordered $\Gamma$-semirings. Mathematica Moravica, Tome 22 (2018) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a9/