Starlike functions of complex order with bounded radius rotation by using quantum calculus
Mathematica Moravica, Tome 22 (2018) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the present paper, we study on the subclass of starlike functions of complex order with bounded radius rotation using $q-$ difference operator denoted by $\mathcal{R}_{k}(q, b)$ where $k\geq2$, $q\in(0,1)$ and $b\in\mathbb{C}\backslash \{0\}$. We investigate coefficient inequality, distortion theorem and radius of starlikeness for the class $\mathcal{R}_{k}(q, b)$.
Mots-clés :
q-starlike function of complex order, bounded radius rotation, coefficient inequality, distortion theorem, radius of starlikeness
@article{MM3_2018_22_2_a6, author = {Asena \c{C}etinkaya and Oya Mert}, title = {Starlike functions of complex order with bounded radius rotation by using quantum calculus}, journal = {Mathematica Moravica}, pages = {83 - 88}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a6/} }
TY - JOUR AU - Asena Çetinkaya AU - Oya Mert TI - Starlike functions of complex order with bounded radius rotation by using quantum calculus JO - Mathematica Moravica PY - 2018 SP - 83 EP - 88 VL - 22 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a6/ ID - MM3_2018_22_2_a6 ER -
Asena Çetinkaya; Oya Mert. Starlike functions of complex order with bounded radius rotation by using quantum calculus. Mathematica Moravica, Tome 22 (2018) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a6/