Starlike functions of complex order with bounded radius rotation by using quantum calculus
Mathematica Moravica, Tome 22 (2018) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present paper, we study on the subclass of starlike functions of complex order with bounded radius rotation using $q-$ difference operator denoted by $\mathcal{R}_{k}(q, b)$ where $k\geq2$, $q\in(0,1)$ and $b\in\mathbb{C}\backslash \{0\}$. We investigate coefficient inequality, distortion theorem and radius of starlikeness for the class $\mathcal{R}_{k}(q, b)$.
Mots-clés : q-starlike function of complex order, bounded radius rotation, coefficient inequality, distortion theorem, radius of starlikeness
@article{MM3_2018_22_2_a6,
     author = {Asena \c{C}etinkaya and Oya Mert},
     title = {Starlike functions of complex order with bounded radius rotation by using quantum calculus},
     journal = {Mathematica Moravica},
     pages = {83 - 88},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a6/}
}
TY  - JOUR
AU  - Asena Çetinkaya
AU  - Oya Mert
TI  - Starlike functions of complex order with bounded radius rotation by using quantum calculus
JO  - Mathematica Moravica
PY  - 2018
SP  - 83 
EP  -  88
VL  - 22
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a6/
ID  - MM3_2018_22_2_a6
ER  - 
%0 Journal Article
%A Asena Çetinkaya
%A Oya Mert
%T Starlike functions of complex order with bounded radius rotation by using quantum calculus
%J Mathematica Moravica
%D 2018
%P 83 - 88
%V 22
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a6/
%F MM3_2018_22_2_a6
Asena Çetinkaya; Oya Mert. Starlike functions of complex order with bounded radius rotation by using quantum calculus. Mathematica Moravica, Tome 22 (2018) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2018_22_2_a6/