(f,g)-derivation of ordered $\Gamma$-semirings
Mathematica Moravica, Tome 22 (2018) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we introduce the concept of (f,g)-derivation, which is a generalization of f - derivation and derivation of ordered $\Gamma$-semiring and study some properties of (f,g)-derivation of ordered $\Gamma$-semirings. We prove that, if $d$ is a (f,g)-derivation of an ordered integral $\Gamma$-semiring $M$ then $\ker d$ is a $m-k-$ideal of $M$ and we characterize $m-k-$ideal using (f,g)-derivation of ordered $\Gamma$-semiring $M$.
Mots-clés : Ordered $\Gamma$-semiring, derivation, $\Gamma$-semiring, integral ordered $\Gamma$-semiring, (f;g)-derivation
@article{MM3_2018_22_1_a8,
     author = {Marapureddy Murali Krishna Rao and Bolineni Venkateswarlu and Bandaru Ravi Kumar and Kona Rajendra Kumar},
     title = {(f,g)-derivation of ordered $\Gamma$-semirings},
     journal = {Mathematica Moravica},
     pages = {107 - 121},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a8/}
}
TY  - JOUR
AU  - Marapureddy Murali Krishna Rao
AU  - Bolineni Venkateswarlu
AU  - Bandaru Ravi Kumar
AU  - Kona Rajendra Kumar
TI  - (f,g)-derivation of ordered $\Gamma$-semirings
JO  - Mathematica Moravica
PY  - 2018
SP  - 107 
EP  -  121
VL  - 22
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a8/
ID  - MM3_2018_22_1_a8
ER  - 
%0 Journal Article
%A Marapureddy Murali Krishna Rao
%A Bolineni Venkateswarlu
%A Bandaru Ravi Kumar
%A Kona Rajendra Kumar
%T (f,g)-derivation of ordered $\Gamma$-semirings
%J Mathematica Moravica
%D 2018
%P 107 - 121
%V 22
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a8/
%F MM3_2018_22_1_a8
Marapureddy Murali Krishna Rao; Bolineni Venkateswarlu; Bandaru Ravi Kumar; Kona Rajendra Kumar. (f,g)-derivation of ordered $\Gamma$-semirings. Mathematica Moravica, Tome 22 (2018) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a8/