(f,g)-derivation of ordered $\Gamma$-semirings
Mathematica Moravica, Tome 22 (2018) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce the concept of (f,g)-derivation, which is a generalization of f - derivation and derivation of ordered $\Gamma$-semiring and study some properties of (f,g)-derivation of ordered $\Gamma$-semirings. We prove that, if $d$ is a (f,g)-derivation of an ordered integral $\Gamma$-semiring $M$ then $\ker d$ is a $m-k-$ideal of $M$ and we characterize $m-k-$ideal using (f,g)-derivation of ordered $\Gamma$-semiring $M$.
Mots-clés :
Ordered $\Gamma$-semiring, derivation, $\Gamma$-semiring, integral ordered $\Gamma$-semiring, (f;g)-derivation
@article{MM3_2018_22_1_a8, author = {Marapureddy Murali Krishna Rao and Bolineni Venkateswarlu and Bandaru Ravi Kumar and Kona Rajendra Kumar}, title = {(f,g)-derivation of ordered $\Gamma$-semirings}, journal = {Mathematica Moravica}, pages = {107 - 121}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a8/} }
TY - JOUR AU - Marapureddy Murali Krishna Rao AU - Bolineni Venkateswarlu AU - Bandaru Ravi Kumar AU - Kona Rajendra Kumar TI - (f,g)-derivation of ordered $\Gamma$-semirings JO - Mathematica Moravica PY - 2018 SP - 107 EP - 121 VL - 22 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a8/ ID - MM3_2018_22_1_a8 ER -
%0 Journal Article %A Marapureddy Murali Krishna Rao %A Bolineni Venkateswarlu %A Bandaru Ravi Kumar %A Kona Rajendra Kumar %T (f,g)-derivation of ordered $\Gamma$-semirings %J Mathematica Moravica %D 2018 %P 107 - 121 %V 22 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a8/ %F MM3_2018_22_1_a8
Marapureddy Murali Krishna Rao; Bolineni Venkateswarlu; Bandaru Ravi Kumar; Kona Rajendra Kumar. (f,g)-derivation of ordered $\Gamma$-semirings. Mathematica Moravica, Tome 22 (2018) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a8/