Hermite-Hadamard type inequalities for $(m,M)-\Psi$-convex functions when $\Psi=-\ln$
Mathematica Moravica, Tome 22 (2018) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we establish some Hermite-Hadamard type inequalities for $(m,M)-\Psi$-convex functions when $\Psi =-\ln$. Applications for power functions and weighted arithmetic mean and geometric mean are also provided.
Mots-clés :
Convex functions, special convexity, weighted arithmetic and geometric means, logarithmic function
@article{MM3_2018_22_1_a5, author = {Silvestru Sever Dragomir and Ian Gomm}, title = {Hermite-Hadamard type inequalities for $(m,M)-\Psi$-convex functions when $\Psi=-\ln$}, journal = {Mathematica Moravica}, pages = {65 - 79}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a5/} }
TY - JOUR AU - Silvestru Sever Dragomir AU - Ian Gomm TI - Hermite-Hadamard type inequalities for $(m,M)-\Psi$-convex functions when $\Psi=-\ln$ JO - Mathematica Moravica PY - 2018 SP - 65 EP - 79 VL - 22 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a5/ ID - MM3_2018_22_1_a5 ER -
Silvestru Sever Dragomir; Ian Gomm. Hermite-Hadamard type inequalities for $(m,M)-\Psi$-convex functions when $\Psi=-\ln$. Mathematica Moravica, Tome 22 (2018) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2018_22_1_a5/