Best proximity points for generalized $\alpha-\eta-\psi$-Geraghty proximal contraction mappings
Mathematica Moravica, Tome 21 (2017) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we introduce the new notion of generalized $\alpha-\eta-\psi$-Geraghty proximal contraction mappings and prove the existence of the best proximity point for such mappings in $\alpha-\eta$ complete metric spaces. We give an example to illustrate our result. Our result extends some of the results in the literature.
Mots-clés : Best proximty point, $\alpha$-triangular proximal admissble with respect to $\eta$, generalized $\alpha-\eta-\psi$-Geraghty proximal contraction
@article{MM3_2017_21_2_a6,
     author = {K.K.M. Sarma and Yohannes Gebru},
     title = {Best proximity points for generalized $\alpha-\eta-\psi${-Geraghty} proximal contraction mappings},
     journal = {Mathematica Moravica},
     pages = {85 - 102},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2017_21_2_a6/}
}
TY  - JOUR
AU  - K.K.M. Sarma
AU  - Yohannes Gebru
TI  - Best proximity points for generalized $\alpha-\eta-\psi$-Geraghty proximal contraction mappings
JO  - Mathematica Moravica
PY  - 2017
SP  - 85 
EP  -  102
VL  - 21
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2017_21_2_a6/
ID  - MM3_2017_21_2_a6
ER  - 
%0 Journal Article
%A K.K.M. Sarma
%A Yohannes Gebru
%T Best proximity points for generalized $\alpha-\eta-\psi$-Geraghty proximal contraction mappings
%J Mathematica Moravica
%D 2017
%P 85 - 102
%V 21
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2017_21_2_a6/
%F MM3_2017_21_2_a6
K.K.M. Sarma; Yohannes Gebru. Best proximity points for generalized $\alpha-\eta-\psi$-Geraghty proximal contraction mappings. Mathematica Moravica, Tome 21 (2017) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2017_21_2_a6/