General integral formulas involving Humbert hypergeometric functions of two variables
Mathematica Moravica, Tome 21 (2017) no. 2.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we have established two general integral formulas involving Humbert hypergeometric functions of two variables $\Phi_{2}$ and $\Psi_{2}$. The results are obtained with the help of a generalization of classical Kummer's summation theorem on the sum of the series ${}_{2}F_{1}(-1)$ due to Lavoie et al. [5]. Some interesting applications are also presented.
Mots-clés :
Humbert functions, Exton functions, Kampé de Fériet function, Integral formulas, Kummer’s theorem
@article{MM3_2017_21_2_a5, author = {Ahmed Ali Atash and Hussein Saleh Bellehaj}, title = {General integral formulas involving {Humbert} hypergeometric functions of two variables}, journal = {Mathematica Moravica}, pages = {75 - 84}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2017_21_2_a5/} }
TY - JOUR AU - Ahmed Ali Atash AU - Hussein Saleh Bellehaj TI - General integral formulas involving Humbert hypergeometric functions of two variables JO - Mathematica Moravica PY - 2017 SP - 75 EP - 84 VL - 21 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2017_21_2_a5/ ID - MM3_2017_21_2_a5 ER -
Ahmed Ali Atash; Hussein Saleh Bellehaj. General integral formulas involving Humbert hypergeometric functions of two variables. Mathematica Moravica, Tome 21 (2017) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2017_21_2_a5/