A generalization of modules with the property (P*)
Mathematica Moravica, Tome 21 (2017) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

I.A- Khazzi and P.F. Smith called a module M have the property (P*) if every submodule N of M there exists a direct summand K of M such that $K\leq N$ and $\frac{N}{K}\subseteq Rad(\frac{M}{K})$. Motivated by this, it is natural to introduce another notion that we called modules that have the properties (GP*) and (N - GP*) as proper generalizations of modules that have the property (P*). In this paper we obtain various properties of modules that have properties (GP*) and (N - GP*). We show that the class of modules for which every direct summand is a fully invariant submodule that have the property (GP*) is closed under finite direct sums. We completely determine the structure of these modules over generalized f-semiperfect rings.
Mots-clés : Generalized f-semiperfect ring, the properties (P*), (GP*) and (N-GP*)
@article{MM3_2017_21_1_a7,
     author = {Burcu Ni\c{s}anc{\i} T\"urkmen},
     title = {A generalization of modules with the property {(P*)}},
     journal = {Mathematica Moravica},
     pages = {87 - 94},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a7/}
}
TY  - JOUR
AU  - Burcu Nişancı Türkmen
TI  - A generalization of modules with the property (P*)
JO  - Mathematica Moravica
PY  - 2017
SP  - 87 
EP  -  94
VL  - 21
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a7/
ID  - MM3_2017_21_1_a7
ER  - 
%0 Journal Article
%A Burcu Nişancı Türkmen
%T A generalization of modules with the property (P*)
%J Mathematica Moravica
%D 2017
%P 87 - 94
%V 21
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a7/
%F MM3_2017_21_1_a7
Burcu Nişancı Türkmen. A generalization of modules with the property (P*). Mathematica Moravica, Tome 21 (2017) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a7/