Reduced and irreducible simple algebraic extensions of commutative rings
Mathematica Moravica, Tome 21 (2017) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let A be a commutative ring with identity and $\alpha$ be an algebraic element over A. We give necessary and sufficient conditions under which the simple algebraic extension $A[\alpha]$ is without nilpotent or without idempotent elements.
Mots-clés :
Commutative rings, Polynomials, Discriminants, Resultants, Simple algebraic extensions, Reduced rings, Irreducible rings
@article{MM3_2017_21_1_a6, author = {S.V. Mihovski}, title = {Reduced and irreducible simple algebraic extensions of commutative rings}, journal = {Mathematica Moravica}, pages = {69 - 86}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a6/} }
S.V. Mihovski. Reduced and irreducible simple algebraic extensions of commutative rings. Mathematica Moravica, Tome 21 (2017) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a6/