Reduced and irreducible simple algebraic extensions of commutative rings
Mathematica Moravica, Tome 21 (2017) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let A be a commutative ring with identity and $\alpha$ be an algebraic element over A. We give necessary and sufficient conditions under which the simple algebraic extension $A[\alpha]$ is without nilpotent or without idempotent elements.
Mots-clés : Commutative rings, Polynomials, Discriminants, Resultants, Simple algebraic extensions, Reduced rings, Irreducible rings
@article{MM3_2017_21_1_a6,
     author = {S.V. Mihovski},
     title = {Reduced and irreducible simple algebraic extensions of commutative rings},
     journal = {Mathematica Moravica},
     pages = {69 - 86},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a6/}
}
TY  - JOUR
AU  - S.V. Mihovski
TI  - Reduced and irreducible simple algebraic extensions of commutative rings
JO  - Mathematica Moravica
PY  - 2017
SP  - 69 
EP  -  86
VL  - 21
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a6/
ID  - MM3_2017_21_1_a6
ER  - 
%0 Journal Article
%A S.V. Mihovski
%T Reduced and irreducible simple algebraic extensions of commutative rings
%J Mathematica Moravica
%D 2017
%P 69 - 86
%V 21
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a6/
%F MM3_2017_21_1_a6
S.V. Mihovski. Reduced and irreducible simple algebraic extensions of commutative rings. Mathematica Moravica, Tome 21 (2017) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a6/