A fixed point theorem for $(\mu,\psi)$-generalized $f$-weakly contractive mappings in partially ordered 2-metric spaces
Mathematica Moravica, Tome 21 (2017) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The purpose of this paper is to introduce the notion of a $(\mu,\psi)$-generalized f-weakly contractive mapping in partially ordered 2-metric spaces and state a fixed point theorem for this mapping in complete, partially ordered 2-metric spaces. The main results of this paper are generalizations of the main results of [4, 10]. Also, some examples are given to illustrate the obtained results.
Mots-clés :
Fixed point, 2-metric space, $(\mu;\psi)$-generalized f-weakly contractive mapping
@article{MM3_2017_21_1_a3, author = {Nguyen Trung Hieu and Huynh Ngoc Cam}, title = {A fixed point theorem for $(\mu,\psi)$-generalized $f$-weakly contractive mappings in partially ordered 2-metric spaces}, journal = {Mathematica Moravica}, pages = {37 - 50}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a3/} }
TY - JOUR AU - Nguyen Trung Hieu AU - Huynh Ngoc Cam TI - A fixed point theorem for $(\mu,\psi)$-generalized $f$-weakly contractive mappings in partially ordered 2-metric spaces JO - Mathematica Moravica PY - 2017 SP - 37 EP - 50 VL - 21 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a3/ ID - MM3_2017_21_1_a3 ER -
%0 Journal Article %A Nguyen Trung Hieu %A Huynh Ngoc Cam %T A fixed point theorem for $(\mu,\psi)$-generalized $f$-weakly contractive mappings in partially ordered 2-metric spaces %J Mathematica Moravica %D 2017 %P 37 - 50 %V 21 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a3/ %F MM3_2017_21_1_a3
Nguyen Trung Hieu; Huynh Ngoc Cam. A fixed point theorem for $(\mu,\psi)$-generalized $f$-weakly contractive mappings in partially ordered 2-metric spaces. Mathematica Moravica, Tome 21 (2017) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a3/