Čebyšev’s type inequalities for positive linear maps of selfadjoint operators in Hilbert spaces
Mathematica Moravica, Tome 21 (2017) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Some inequalities for positive linear maps of continuous synchronous (asynchronous) functions of selfadjoint linear operators in Hilbert spaces, under suitable assumptions for the involved operators, are given. Applications for power function and logarithm are provided as well.
Mots-clés :
Positive linear maps, Selfadjoint operators, Synchronous (asynchronous) functions, Monotonic functions, Čebyšev inequality, Functions of Selfadjoint operators
@article{MM3_2017_21_1_a0, author = {Silvestru Sever Dragomir}, title = {\v{C}eby\v{s}ev{\textquoteright}s type inequalities for positive linear maps of selfadjoint operators in {Hilbert} spaces}, journal = {Mathematica Moravica}, pages = {1 - 15}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a0/} }
TY - JOUR AU - Silvestru Sever Dragomir TI - Čebyšev’s type inequalities for positive linear maps of selfadjoint operators in Hilbert spaces JO - Mathematica Moravica PY - 2017 SP - 1 EP - 15 VL - 21 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a0/ ID - MM3_2017_21_1_a0 ER -
Silvestru Sever Dragomir. Čebyšev’s type inequalities for positive linear maps of selfadjoint operators in Hilbert spaces. Mathematica Moravica, Tome 21 (2017) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2017_21_1_a0/