$\mathcal{I}$ — Fréchet-Urysohn Spaces
Mathematica Moravica, Tome 20 (2016) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we introduce the concept ss-sequentially quotient mapping. Using this concept, we characterize s-Fréchet-Urysohn spaces and s-sequential spaces. Finally, we develop the properties of $\mathcal{I}$-Fréchet-Urysohn spaces which is the generalized form of s-Fréchet-Urysohn spaces. Also, we give an example that product of two $\mathcal{I}$-Fréchet-Urysohn spaces need not be an $\mathcal{I}$-Fréchet-Urysohn space for any $\mathcal{I}$.
Mots-clés : Sequentially quotient, sequential space, Fréchet-Urysohn space, s-convergence, $\mathcal{I}$-convergence
@article{MM3_2016_20_2_a5,
     author = {V. Renukadevi and B. Prakash},
     title = {$\mathcal{I}$ {\textemdash} {Fr\'echet-Urysohn} {Spaces}},
     journal = {Mathematica Moravica},
     pages = {87 - 97},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2016},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_2_a5/}
}
TY  - JOUR
AU  - V. Renukadevi
AU  - B. Prakash
TI  - $\mathcal{I}$ — Fréchet-Urysohn Spaces
JO  - Mathematica Moravica
PY  - 2016
SP  - 87 
EP  -  97
VL  - 20
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_2_a5/
ID  - MM3_2016_20_2_a5
ER  - 
%0 Journal Article
%A V. Renukadevi
%A B. Prakash
%T $\mathcal{I}$ — Fréchet-Urysohn Spaces
%J Mathematica Moravica
%D 2016
%P 87 - 97
%V 20
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2016_20_2_a5/
%F MM3_2016_20_2_a5
V. Renukadevi; B. Prakash. $\mathcal{I}$ — Fréchet-Urysohn Spaces. Mathematica Moravica, Tome 20 (2016) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_2_a5/