The strongly generalized triple difference $\Gamma^{3}$ sequence spaces defined by a modulus
Mathematica Moravica, Tome 20 (2016) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we introduce the strongly generalized difference sequence spaces using non-negative four dimensional matrix of complex numbers. We also give natural relationship between strongly generalized difference ${V_{3_{\Gamma^{3}}}}^{\lambda_{3}}[A,\Delta^{m},p,f]$ — summable sequences with respect to $f$.
We examine some topological properties of ${V_{3_{\Gamma^{3}}}}^{\lambda_{3}}[A,\Delta^{m},p,f]$ — spaces and investigate some inclusion relations between these spaces.
Mots-clés :
entire sequence, analytic sequence, triple sequence;difference sequence
@article{MM3_2016_20_1_a9, author = {T.V.G. Shri Prakash and M. Chandramouleeswaran and N. Subramanian}, title = {The strongly generalized triple difference $\Gamma^{3}$ sequence spaces defined by a modulus}, journal = {Mathematica Moravica}, pages = {115 - 123}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a9/} }
TY - JOUR AU - T.V.G. Shri Prakash AU - M. Chandramouleeswaran AU - N. Subramanian TI - The strongly generalized triple difference $\Gamma^{3}$ sequence spaces defined by a modulus JO - Mathematica Moravica PY - 2016 SP - 115 EP - 123 VL - 20 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a9/ ID - MM3_2016_20_1_a9 ER -
%0 Journal Article %A T.V.G. Shri Prakash %A M. Chandramouleeswaran %A N. Subramanian %T The strongly generalized triple difference $\Gamma^{3}$ sequence spaces defined by a modulus %J Mathematica Moravica %D 2016 %P 115 - 123 %V 20 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a9/ %F MM3_2016_20_1_a9
T.V.G. Shri Prakash; M. Chandramouleeswaran; N. Subramanian. The strongly generalized triple difference $\Gamma^{3}$ sequence spaces defined by a modulus. Mathematica Moravica, Tome 20 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a9/