Slant Helices, Darboux Helices and Similar Curves in Dual Space $\mathbb{D}^{3}$
Mathematica Moravica, Tome 20 (2016) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we give definitions and characterizations of slant helices, normalized Darboux helices and similar curves in dual space $\mathbb{D}^{3}$. First, we define dual slant helices and dual normalized Darboux helices and show that dual slant helices are also dual normalized Darboux helices. Then, we introduce the concept of dual similar curves and obtain that the family of dual slant helices forms a family of dual similar curves.
Mots-clés :
Dual space, dual slant helix, dual Darboux helix, dual similar curves
@article{MM3_2016_20_1_a7, author = {Burak \c{S}ahiner and Mehmet \"Onder}, title = {Slant {Helices,} {Darboux} {Helices} and {Similar} {Curves} in {Dual} {Space} $\mathbb{D}^{3}$}, journal = {Mathematica Moravica}, pages = {89 - 103}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a7/} }
TY - JOUR AU - Burak Şahiner AU - Mehmet Önder TI - Slant Helices, Darboux Helices and Similar Curves in Dual Space $\mathbb{D}^{3}$ JO - Mathematica Moravica PY - 2016 SP - 89 EP - 103 VL - 20 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a7/ ID - MM3_2016_20_1_a7 ER -
Burak Şahiner; Mehmet Önder. Slant Helices, Darboux Helices and Similar Curves in Dual Space $\mathbb{D}^{3}$. Mathematica Moravica, Tome 20 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a7/