Strong Convergence Theorem for Generalized Mixed Equilibrium Problems and Bregman Nonexpansive Mapping in Banach Spaces
Mathematica Moravica, Tome 20 (2016) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we study an iterative method for a common fixed point of a Bregman strongly nonexpansive mapping in the frame work of reflexive real Banach spaces. Moreover, we prove the strong convergence theorem for finding common fixed points with the solutions of a generalized mixed equilibrium problem.
Mots-clés :
Banach space, Bregman projection, Bregman distance, Bregman strongly nonexpansive mapping, fixed point, generalized mixed equilibrium problem
@article{MM3_2016_20_1_a6, author = {Vahid Darvish}, title = {Strong {Convergence} {Theorem} for {Generalized} {Mixed} {Equilibrium} {Problems} and {Bregman} {Nonexpansive} {Mapping} in {Banach} {Spaces}}, journal = {Mathematica Moravica}, pages = {69 - 87}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a6/} }
TY - JOUR AU - Vahid Darvish TI - Strong Convergence Theorem for Generalized Mixed Equilibrium Problems and Bregman Nonexpansive Mapping in Banach Spaces JO - Mathematica Moravica PY - 2016 SP - 69 EP - 87 VL - 20 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a6/ ID - MM3_2016_20_1_a6 ER -
%0 Journal Article %A Vahid Darvish %T Strong Convergence Theorem for Generalized Mixed Equilibrium Problems and Bregman Nonexpansive Mapping in Banach Spaces %J Mathematica Moravica %D 2016 %P 69 - 87 %V 20 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a6/ %F MM3_2016_20_1_a6
Vahid Darvish. Strong Convergence Theorem for Generalized Mixed Equilibrium Problems and Bregman Nonexpansive Mapping in Banach Spaces. Mathematica Moravica, Tome 20 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a6/