Asymmetric Maximal and Minimal Open Sets
Mathematica Moravica, Tome 20 (2016) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We introduce the notions of maximal and minimal open sets in bitopological spaces and obtain some properties of them. In contrary to maximal and minimal open sets in topological spaces, we observe that maximal and minimal open sets in bitopological spaces behave differently. The maximal and minimal open sets in a bitopological space under the operations of union and intersection respectively sometimes become slightly different types of maximal and minimal open sets in that bitopological space. We also obtain results concerning an asymmetric minimal open set on a subspace of a bitopological space.
Mots-clés : $(\mathscr{P}_{i}, \mathscr{P}_{j})$maximal open set, $(\mathscr{P}_{i}, \mathscr{P}_{j})$minimal open set, pairwise maximal open set, pairwise minimal open set, disconnected bitopological space
@article{MM3_2016_20_1_a5,
     author = {Ajoy Mukharjee and Arup Roy Choudhury and M.K. Bose},
     title = {Asymmetric {Maximal} and {Minimal} {Open} {Sets}},
     journal = {Mathematica Moravica},
     pages = {59 - 67},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a5/}
}
TY  - JOUR
AU  - Ajoy Mukharjee
AU  - Arup Roy Choudhury
AU  - M.K. Bose
TI  - Asymmetric Maximal and Minimal Open Sets
JO  - Mathematica Moravica
PY  - 2016
SP  - 59 
EP  -  67
VL  - 20
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a5/
ID  - MM3_2016_20_1_a5
ER  - 
%0 Journal Article
%A Ajoy Mukharjee
%A Arup Roy Choudhury
%A M.K. Bose
%T Asymmetric Maximal and Minimal Open Sets
%J Mathematica Moravica
%D 2016
%P 59 - 67
%V 20
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a5/
%F MM3_2016_20_1_a5
Ajoy Mukharjee; Arup Roy Choudhury; M.K. Bose. Asymmetric Maximal and Minimal Open Sets. Mathematica Moravica, Tome 20 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a5/