Solvability of Boundary Value Problems for Second Order Impulsive Differential Equations on Whole Line with a Non-Carathédory Nonlinearity
Mathematica Moravica, Tome 20 (2016) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We study a class of boundary value problems of the impulsive differential equations on whole lines with a non-Carathéodory nonlinearity. Sufficient conditions to guarantee the existence of solutions are established. A new Banach function space X and its relatively compact property of subset of X is proved. An example is given to illustrate the main results.
Mots-clés : Second order impulsive differential equation, boundary value problem, non-Carathéodory nonlinearity, fixed point theorem
@article{MM3_2016_20_1_a3,
     author = {Xiaohu Yang and Yuji Liu},
     title = {Solvability of {Boundary} {Value} {Problems} for {Second} {Order} {Impulsive} {Differential} {Equations} on {Whole} {Line} with a {Non-Carath\'edory} {Nonlinearity}},
     journal = {Mathematica Moravica},
     pages = {31 - 49},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a3/}
}
TY  - JOUR
AU  - Xiaohu Yang
AU  - Yuji Liu
TI  - Solvability of Boundary Value Problems for Second Order Impulsive Differential Equations on Whole Line with a Non-Carathédory Nonlinearity
JO  - Mathematica Moravica
PY  - 2016
SP  - 31 
EP  -  49
VL  - 20
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a3/
ID  - MM3_2016_20_1_a3
ER  - 
%0 Journal Article
%A Xiaohu Yang
%A Yuji Liu
%T Solvability of Boundary Value Problems for Second Order Impulsive Differential Equations on Whole Line with a Non-Carathédory Nonlinearity
%J Mathematica Moravica
%D 2016
%P 31 - 49
%V 20
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a3/
%F MM3_2016_20_1_a3
Xiaohu Yang; Yuji Liu. Solvability of Boundary Value Problems for Second Order Impulsive Differential Equations on Whole Line with a Non-Carathédory Nonlinearity. Mathematica Moravica, Tome 20 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a3/