Solvability of Boundary Value Problems for Second Order Impulsive Differential Equations on Whole Line with a Non-Carathédory Nonlinearity
Mathematica Moravica, Tome 20 (2016) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We study a class of boundary value problems of the impulsive differential equations on whole lines with a non-Carathéodory nonlinearity. Sufficient conditions to guarantee the existence of solutions are established. A new Banach function space X and its relatively compact property of subset of X is proved. An example is given to illustrate the main results.
Mots-clés :
Second order impulsive differential equation, boundary value problem, non-Carathéodory nonlinearity, fixed point theorem
@article{MM3_2016_20_1_a3, author = {Xiaohu Yang and Yuji Liu}, title = {Solvability of {Boundary} {Value} {Problems} for {Second} {Order} {Impulsive} {Differential} {Equations} on {Whole} {Line} with a {Non-Carath\'edory} {Nonlinearity}}, journal = {Mathematica Moravica}, pages = {31 - 49}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a3/} }
TY - JOUR AU - Xiaohu Yang AU - Yuji Liu TI - Solvability of Boundary Value Problems for Second Order Impulsive Differential Equations on Whole Line with a Non-Carathédory Nonlinearity JO - Mathematica Moravica PY - 2016 SP - 31 EP - 49 VL - 20 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a3/ ID - MM3_2016_20_1_a3 ER -
%0 Journal Article %A Xiaohu Yang %A Yuji Liu %T Solvability of Boundary Value Problems for Second Order Impulsive Differential Equations on Whole Line with a Non-Carathédory Nonlinearity %J Mathematica Moravica %D 2016 %P 31 - 49 %V 20 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a3/ %F MM3_2016_20_1_a3
Xiaohu Yang; Yuji Liu. Solvability of Boundary Value Problems for Second Order Impulsive Differential Equations on Whole Line with a Non-Carathédory Nonlinearity. Mathematica Moravica, Tome 20 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a3/