Periodic Solutions for Neutral Nonlinear Difference Equations with Functional Delay
Mathematica Moravica, Tome 20 (2016) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We use a variant of Krasnoselskii's fixed point theorem to show that the nonlinear difference equation with functional delay $\Delta x(t) = -a(t) g(x(t)) + c(t)\Delta x(t -\tau(t)) + q(t, x(t), x(t-\tau(t)))$, has periodic solutions. For that end, we invert this equation to construct a fixed point mapping written as a sum of a completely continuous map and a large contraction which is suitable for the application of Krasnoselskii-Burton's theorem.
Mots-clés : Krasnoselskii theorem, Fixed point, Periodic solutions, Large contraction, Difference equations
@article{MM3_2016_20_1_a2,
     author = {Imene Soualhia and Abdelouaheb Ardjouni and Ahcene Djoudi},
     title = {Periodic {Solutions} for {Neutral} {Nonlinear} {Difference} {Equations} with {Functional} {Delay}},
     journal = {Mathematica Moravica},
     pages = {17 - 29},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a2/}
}
TY  - JOUR
AU  - Imene Soualhia
AU  - Abdelouaheb Ardjouni
AU  - Ahcene Djoudi
TI  - Periodic Solutions for Neutral Nonlinear Difference Equations with Functional Delay
JO  - Mathematica Moravica
PY  - 2016
SP  - 17 
EP  -  29
VL  - 20
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a2/
ID  - MM3_2016_20_1_a2
ER  - 
%0 Journal Article
%A Imene Soualhia
%A Abdelouaheb Ardjouni
%A Ahcene Djoudi
%T Periodic Solutions for Neutral Nonlinear Difference Equations with Functional Delay
%J Mathematica Moravica
%D 2016
%P 17 - 29
%V 20
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a2/
%F MM3_2016_20_1_a2
Imene Soualhia; Abdelouaheb Ardjouni; Ahcene Djoudi. Periodic Solutions for Neutral Nonlinear Difference Equations with Functional Delay. Mathematica Moravica, Tome 20 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a2/