Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings
Mathematica Moravica, Tome 20 (2016) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The aim of this paper is to establish some strong and weak convergence theorems of modified SP-iterations for three generalized asymptotically quasi-nonexpansive mappings in the framework of Banach spaces. Our results extend and generalize several results from the current existing literature.
Mots-clés : Generalized asymptotically quasi-nonexpansive mapping, modified SP-iteration process, common fixed point, Banach space, strong convergence, weak convergence
@article{MM3_2016_20_1_a10,
     author = {G.S. Saluja},
     title = {Weak and strong convergence theorems of modified {SP-iterations} for generalized asymptotically quasi-nonexpansive mappings},
     journal = {Mathematica Moravica},
     pages = {125 - 144},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a10/}
}
TY  - JOUR
AU  - G.S. Saluja
TI  - Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings
JO  - Mathematica Moravica
PY  - 2016
SP  - 125 
EP  -  144
VL  - 20
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a10/
ID  - MM3_2016_20_1_a10
ER  - 
%0 Journal Article
%A G.S. Saluja
%T Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings
%J Mathematica Moravica
%D 2016
%P 125 - 144
%V 20
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a10/
%F MM3_2016_20_1_a10
G.S. Saluja. Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings. Mathematica Moravica, Tome 20 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2016_20_1_a10/