Some New Integral Inequalities via Variant of Pompeiu’s Mean Value Theorem
Mathematica Moravica, Tome 19 (2015) no. 2.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The main of this paper is to establish an inequality providing some better bounds for integral mean by using a mean value theorem. Our results generalize the results of Ahmad et. al in [8].
Mots-clés : Ostrowski inequality, p-norm, mean value theorem
@article{MM3_2015_19_2_a6,
     author = {Mehmet Zeki Sarikaya},
     title = {Some {New} {Integral} {Inequalities} via {Variant} of {Pompeiu{\textquoteright}s} {Mean} {Value} {Theorem}},
     journal = {Mathematica Moravica},
     pages = {89 - 95},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_2015_19_2_a6/}
}
TY  - JOUR
AU  - Mehmet Zeki Sarikaya
TI  - Some New Integral Inequalities via Variant of Pompeiu’s Mean Value Theorem
JO  - Mathematica Moravica
PY  - 2015
SP  - 89 
EP  -  95
VL  - 19
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_2015_19_2_a6/
ID  - MM3_2015_19_2_a6
ER  - 
%0 Journal Article
%A Mehmet Zeki Sarikaya
%T Some New Integral Inequalities via Variant of Pompeiu’s Mean Value Theorem
%J Mathematica Moravica
%D 2015
%P 89 - 95
%V 19
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_2015_19_2_a6/
%F MM3_2015_19_2_a6
Mehmet Zeki Sarikaya. Some New Integral Inequalities via Variant of Pompeiu’s Mean Value Theorem. Mathematica Moravica, Tome 19 (2015) no. 2. https://geodesic-test.mathdoc.fr/item/MM3_2015_19_2_a6/