On the Theorem of Wan for K-Quasiconformal Hyperbolic Harmonic Self Mappings of the Unit Disk
Mathematica Moravica, Tome 19 (2015) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give a new glance to the theorem of Wan (Theorem 1.1) which is related to the hyperbolic bi-Lipschicity of the $K$-quasiconformal, $K\geq 1$, hyperbolic harmonic mappings of the unit disk $\mathbb{D}$ onto itself. Especially, if $f$ is such a mapping and $f(0) = 0$, we obtained that the following double inequality is valid $2|z|/(K+1) \leq |f(z)| \leq \sqrt{K|z|}$, whenever $z\in\mathbb{D}$.
Mots-clés :
Hyperbolic metric, Harmonic mappings, Quasiconformal mappings
@article{MM3_2015_19_1_a6, author = {Miljan Kne\v{z}evi\'c}, title = {On the {Theorem} of {Wan} for {K-Quasiconformal} {Hyperbolic} {Harmonic} {Self} {Mappings} of the {Unit} {Disk}}, journal = {Mathematica Moravica}, pages = {81 - 85}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a6/} }
Miljan Knežević. On the Theorem of Wan for K-Quasiconformal Hyperbolic Harmonic Self Mappings of the Unit Disk. Mathematica Moravica, Tome 19 (2015) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a6/