Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces
Mathematica Moravica, Tome 19 (2015) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Suppose $K$ is a nonempty closed convex subset of a real uniformly convex Banach space $E$. Let $S,T: K \to K$ be two asymptotically quasi-nonexpansive mappings in the intermediate sense such that $F = F(S) \cap F(T) = \{x\in K : Sx = Tx = x\} \neq \emptyset$. Suppose $\{x_{n}\}$ is generated iteratively by $x_{1}\in K$, $x_{n+1} = (1 - \alpha_{n})T^{n}x_{n} + \alpha_{n}S^{n}y_{n}$, $y_{n} = (1-\beta_{n})x_{n} + \beta_{n}T^{n}x_{n}$, $n \geq 1$, where $\{\alpha_{n}\}$ and $\{\beta_{n}\}$ are real sequences in $[a,b]$ for some $a,b\in (0,1)$. If $S$ and $T$ satisfy condition (B) or either $S$ or $T$ is semi-compact, then the sequence $\{x_{n}\}$ converges strongly to some $q\in F$ and if $E$ satisfying the Opial's condition, then the sequence $\{x_{n}\}$ converges weakly to some $q\in F.$
Mots-clés :
Asymptotically quasi-nonexpansive mapping in the intermediate sense, modified Ishikawa type iteration process, common fixed point, strong convergence, uniformly convex Banach space, weak convergence
@article{MM3_2015_19_1_a2, author = {Gurucharan Singh Saluja}, title = {Convergence to {Common} {Fixed} {Point} for {Two} {Asymptotically} {Quasi-nonexpansive} {Mappings} in the {Intermediate} {Sense} in {Banach} {Spaces}}, journal = {Mathematica Moravica}, pages = {33 - 48}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, url = {https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a2/} }
TY - JOUR AU - Gurucharan Singh Saluja TI - Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces JO - Mathematica Moravica PY - 2015 SP - 33 EP - 48 VL - 19 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a2/ ID - MM3_2015_19_1_a2 ER -
%0 Journal Article %A Gurucharan Singh Saluja %T Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces %J Mathematica Moravica %D 2015 %P 33 - 48 %V 19 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a2/ %F MM3_2015_19_1_a2
Gurucharan Singh Saluja. Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces. Mathematica Moravica, Tome 19 (2015) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_2015_19_1_a2/